GLOBAL DATASETS & DATA EXCHANGEABILITY

Global Minor Use Workshop, Sept. 20-22, Chicago, IL, USA

Carmen Tiu Global Residue & Risk Leader

Dow AgroSciences

Solutions for the Growing World

Global Residue Programs

- Located in 2+ climatic zones representative of typical growing areas
 - > Temperate
 - > Mediterranean
 - > Tropical

www.climate-zone.com (Image courtesy of the UK Meteorological Office)

Precedents

Global Zoning Concept

- NAFTA Pilot Project to Validate Residue Zone Maps, 2001
- OECD/FAO Zoning Project (2003)
- Bourma Paper exchange of efficacy & crop safety (2005)
- Regulatory Framework
- OECD 509: 40% less trials for global programs (2009)
 - > Guidance document needed more support for zoning
- JMPR 2012 requested evidence proportionality

Global Zoning Analysis

<u>QUESTION:</u> Are there systematic differences in pesticide residue concentrations between zones?

> If not, residue data from various zones conducted under the same or similar application scenarios could be combined to develop globally harmonized MRLs (to include all possible variability)

- US-EPA
- Canadian PMRA
- OECD-RCEG
- JMPR/CCPR
- CropLife
- IR-4
- EFSA

Proposed Tiered Methodology

• Tier 1 – non parametric normalized rank-sum

-if significant zonal differences-

• Tier 2 – parametric mixed effect model

- if differences are significant -

• Tier 3 – variance components analysis, by crop

- if zones significant contributor –

• Tier 4 – estimate global and zonal MRL to select the higher

Method validation

- EPA's synthetic data, real data from DAS, IR-4, CropLife, PMRA
 - > Real datasets: 73 crops, 76 pesticides, 2-4 regions, > 4,000 datapoints

Example of Zoning Analysis, by Crop

0.01473632

Total.

Dow AgroSciences

Dow

100.0

Tier 2

6

0.12139

Global Zoning Analysis Results of Analysis

- The majority of variation in the field trial residues was contributed by within zone variation. This is consistent with what the analysis of 2003 OECD/FAO Global Zoning Concept.
 - between zone variation is ~ 20% of the total (i.e. 0.1925)
 - within zone variation is estimated ~ 80% of the total variation (i.e. 0.7749 = 0.7077 + 0.0672)

Covariance Parameter Estimates		
Cov Parm	Subject	Estimate
Intercept	CropPest	3.0788
Zone	CropPest	0.1925
Field Trial (CropPest)		0.7077
Residual		0.0672

CONCLUSION

- 1. For the global zones analyzed, the data suggest that systematic differences between zones are avg. 12 % and are not statistically significant
 - Confirms findings from OECD/FAO 2003 Zoning Project
- 2. Analyses were also done to compare by-pair (USA vs. Canada) and (EU-NZ vs. EU-SZ) and were not statistically significant
 - Systematic differences where small (< 8%) and support combining data to "North America" and "Europe" zones for regional zoning analysis
- This additional evidence supports the <u>exchangeability of data</u>
 - > Useful to extrapolate between countries
 - > Support Codex-MRLs
 - > Global OECD Joint Reviews

Thanks & Acknowledgements

U.S. EPA – D. Miller, J. Nguyen, S. Funk, M. Doherty Canada's PMRA – M. Thomas, K. O'Rourke Residue Expert Work Group, Crop Life America, IR-4

Thank You

Carmen Tiu tcarmen@dow.com

| 9