Differing criteria for setting crop group MRLs leads to nonharmonized MRLs -Current challenges and opportunities

150 years

What's the problem?

Crop Grouping

is a well accepted and cost effective approach that facilitates the establishment of pesticide tolerances for both major and minor crops.

Non-Harmonized MRLs

Fungi-Blaster®

For effective treatment of Shot Hole disease in fruit trees

Cherry	6 field trials
Peach	9 field trials
Plum	6 field trials

Apricot; apricot, Japanese; capulin; cherry, black; cherry, Nanking; cherry, sweet; cherry, tart; Jujube, Chinese; nectarine; peach; plum; plum, American; plum, beach; plum, Canada; plum, cherry; plum, Chickasaw; plum, Damson; plum, Japanese; plum, Klamath; plum, prune; plumcot; sloe; cultivars, varieties, and/or hybrids of these

Fungi-Res Cherry US 3x100g/ha 0 PHI

Total number of data (n)	6
Percentage of censored data	0%
Number of non-censored data	6
Lowest residue	1.200
Highest residue	2.900
Median residue	2.550
Mean	2.283
Standard deviation (SD)	0.624
Correction factor for censoring (CF)	1.000

Residues (mg/kg)	n
1.2	1
1.9	1
2.5	1
2.6	2
2.9	1

Proposed MRL estimate

- Highest residue	2.900
- Mean + 4 SD	4.780
- CF x 3 Mean	6.850
Unrounded MRL	6.850

Rounded MRL

High uncertainty of MRL estimate.
[Small dataset]

US MRL

Cherry	7
Peach	
Plum	
Stone Fruit	

Fungi-Res

Peach

US

3x100g/ha 0 PHI

Total number of data (n)	9
Percentage of censored data	0%
Number of non-censored data	9
Lowest residue	0.500
Highest residue	2.700
Median residue	1.100
Mean	1.556
Standard deviation (SD)	0.872
Correction factor for censoring (CF)	1.000

Residues (mg/kg)	n
0.5	1
0.8	1
0.9	2
1.1	1
2.2	1
2.4	1
2.5	1
2.7	1

Proposed MRL estimate

- Highest residue	2.700
- Mean + 4 SD	5.043
- CF x 3 Mean	4.667
Unrounded MRL	5.043

Rounded MRL

5

US MRL

Cherry	7
Peach	5
Plum	
Stone Fruit	

Fungi-Res Peach US 3x100g/ha 0 PHI

Total number of data (n) Percentage of censored data 0% 6 Number of non-censored data Lowest residue 0.800 2,200 Highest residue Median residue 1.300 1.333 Mean Standard deviation (SD) 0.516 Correction factor for censoring (CF) 1.000

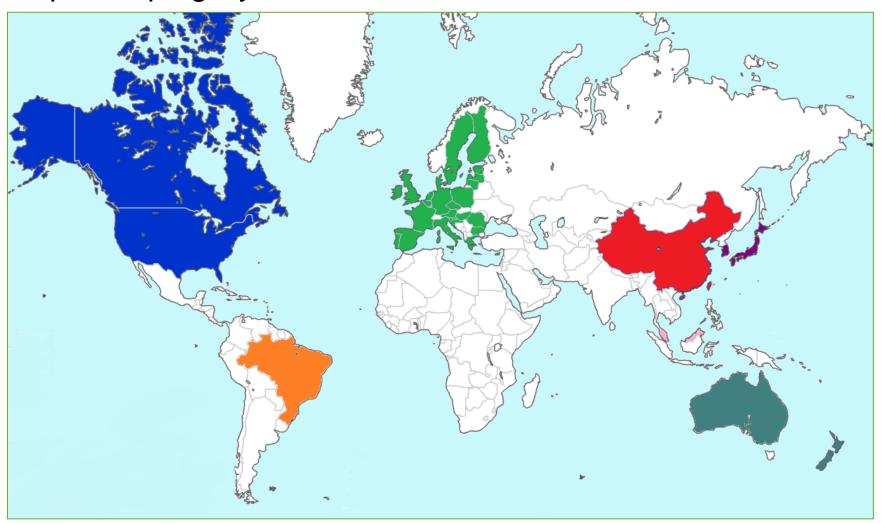
Residues (mg/kg)	n
0.8	1
0.9	1
1.1	1
1.5	2
2.2	1

Proposed MRL estimate

- Highest residue	2.200
- Mean + 4 SD	3.399
- CF x 3 Mean	4.000
Unrounded MRL	4.000

Rounded MRL

High uncertainty of MRL estimate.
[Small dataset]


US MRL

Cherry	7
Peach	5
Plum	4
Stone Fruit	7

Step 2 – Import Tolerances

Crop Grouping Systems around the World

Crop Grouping – EU and US

broccoli or cauliflower

cabbage

mustard greens broccoli and cauliflower

head cabbage

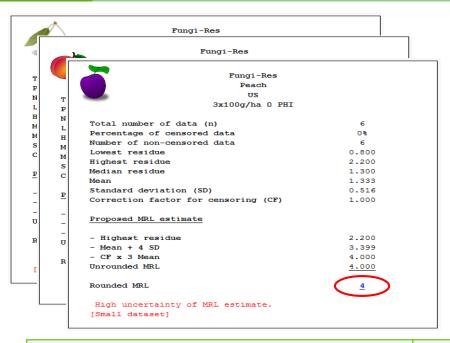
kale

Brassica Vegetables

Crop Grouping – EU and US

tomato pepper tomato pepper cucumber sweet corn and melon

Fruiting Vegetables



EU: Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs

			nut"with the exception of coconuts (4 trials)	\rightarrow	"Closed nuts"
	(iii) Pome fruit	Apples Pears	Apple or pears (with a minimum of 4	\rightarrow	Whole group
(iv)	Stone fruit	Apricots Peaches (including nectarines and similar hybrids)	Peaches or apricots (with a minimum of 4 trials on apricot)	\rightarrow	Nectarines, apricots, peaches
	Major crops 8 trials (each)	Cherries	Sweet cherries	\leftrightarrow	Sour cherries
	(v) Berries and small fru	it			
	(a) Table and wine	Table grapes Wine grapes	Table grapes	\leftrightarrow	Wine grapes

Challenge: different trial requirements in each country

...could lead to denial of MRLs

EU MRL

Cherry	7
Peach	5
Plum	4
Stone Fruit	

	Cherry	2+6 field trials
	Peach	9 field trials
Č	Plum	2+6 field trials

Challenge: different crop group extrapolations in different countries

Fungi-Res MRLs

...leads to different MRLs

		US MRL	EU MRL
6	Cherry	7	7
	Peach	7	5
Č	Plum	7	4

150 years

Step 3 – Codex MRLs

salicina Lindl., var.

Group	003	Stone	fruit
-------	-----	-------	-------

Commodity

Code No.

FS 0246

Morello

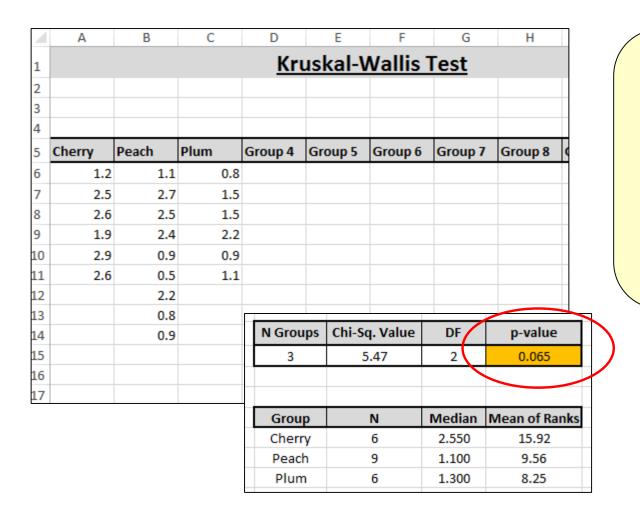
FS 0012	Stone fruits Prunus spp.
FS 0013	Cherries Prunus cerasus L.; P. avium L.
FS 0014	Plums (including Prunes) Prunus domestica L.; other Prunus spp and ssp.
FS 0240	Apricot Prunus armeniaca L.; syn: Armeniaca vulgaris Lamarck
FS 0241	Bullace Prunus insititia L.; syn: Prunus domestica L., ssp. insititia (L.) Schneider
FS 0242	Cherry plum Prunus cerasifera Ehrhart, syn: P. divaricata Ledeboer P. Burbank
FS -	Chickasaw plum, see Plum, Chickasaw
FS 0243	Cherry, Sour Prunus cerasus L.
FS 0244	Cherry, Sweet Prunus avium L.
FS -	Damsons (Damson plums), see Plum, Damson
FS-	Greengages (Greengage plums), see Plum, Greengage
FS 0250	Japanese apricot Prunus mume Siebold & Zucc.
FS 0245	Nectarine Prunus persica (L.) Batch, var. nectarina
FS -	Mirabelle, see Plum, Mirabelle

Prunus cerasus L., var. austera L.

Fungi-Res Residues

Residues (mg/kg)	n
1.2	1
1.9	1
2.5	1
2.6	2
2.9	1

Residues (mg/kg)	n
0.5	1
0.8	1
0.9	2
1.1	1
2.2	1
2.4	1
2.5	1
2.7	1



Residues (mg/kg)	n
0.8	1
0.9	1
1.1	1
1.5	2
2.2	1

150 years

JMPR often uses statistical tests in their review process

Statistical test indicates that there is no evidence that the residues are from different distributions

Can combine datasets for MRL calculation

Challenge: same MRL calculator – different result

Fungi-Res Stonefruit Region / Country 3 x 100g/ha 3D PHI

Total number of data (n)	21
Percentage of censored data	0%
Number of non-censored data	21
Lowest residue	0.500
Highest residue	2.900
Median residue	1.500
Mean	1.700
Standard deviation (SD)	0.787
Correction factor for censoring (CF)	1.000

Residues (mg/kg)	n
0.5	1
0.8	2
0.9	3
1.1	2
1.2	1
1.5	2
1.9	1
2.2	2
2.4	1
2.5	2
2.6	2
2.7	1
2.9	1

Proposed MRL estimate

- Highest residue	2.900
- Mean + 4 SD	4.850
- CF x 3 Mean	5.100
Unrounded MRL	5.100

Rounded MRL

6

Challenge: different ways of combining residue data from representative crops

Fungi-Res MRLs

...leads to different MRLs

		US MRL	EU MRL	Codex CXL
4	Cherry	7	7	6
	Peach	7	5	6
Č	Plum	7	4	6

Opportunities

Projects and efforts that will make a difference ...to reduce the difference

The International Crop Grouping Consulting Committee

The ICGCC has been working to harmonize crop groups internationally for more than 10 years

Chaired by US and the Netherlands Includes more than 200 crop experts and 35 countries

Argentina, Australia, Bangladesh, Belgium, Brazil, Burkina Faso, Canada, Chile, China, Columbia, France, Germany, Guatemala, Honduras, Hungary, India, Israel, Japan, Kenya, Lebanon, Mali, Mexico, Morocco, New Zealand, Nicaragua, Nigeria, S. Korea, Senegal, South Africa, St. Kitts, Taiwan, Thailand, Trinidad, United Kingdom, United States

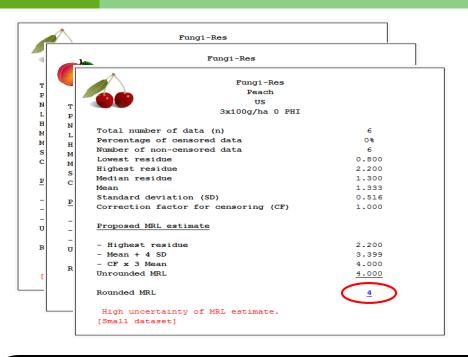
The International Crop Grouping Consulting Committee

The ICGCC has been working to harmonize crop groups internationally for more than 10 years

Chaired by US and the Netherlands Includes more than 200 crop experts and 35 countries

Develop harmonized crop groups that are considered by EPA and CCPR for revision of the Codex Committee on Pesticide Residues (CCPR) Classification of Food and Animal Feeds.

The International Crop Grouping Consulting Committee


The ICGCC has been working to harmonize crop groups internationally for more than 10 years

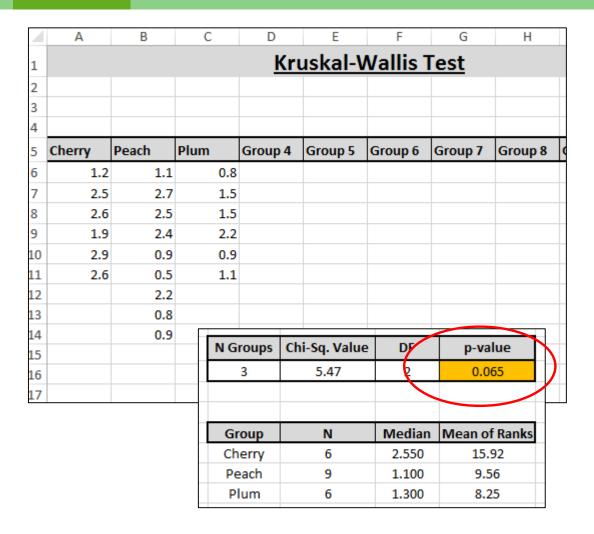
Chaired by US and the Netherlands Includes more than 200 crop experts and 35 countries

"Principles and Guidance for the Selection of Representative Commodities for the Extrapolation of MRLs" 150 years

EPA 5X Rule - Current approach or...

Cherry	7
Peach	5
Plum	4
Stone Fruit	7

MRL



EPA uses the "5X Rule" to determine if representative crops can support a crop group.

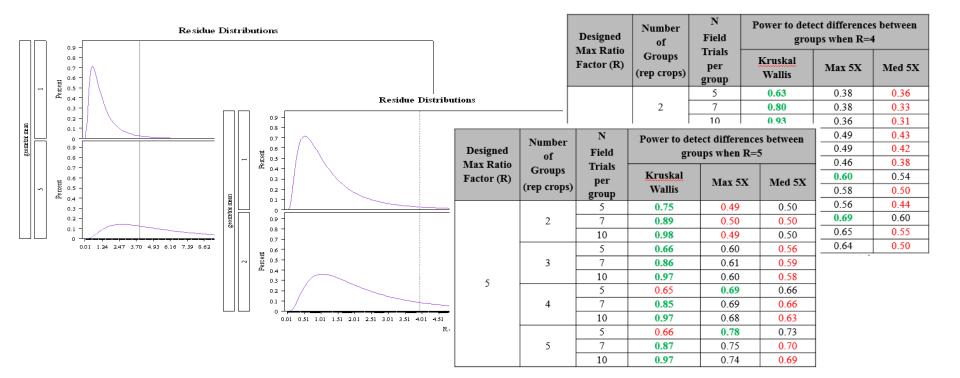
The MRL for each rep crop is calculated separately and the highest MRL is used for the whole group.

... The statistical approach?

Statistical test indicates that there is no evidence that the residues are from different distributions

Can combine datasets for MRL calculation

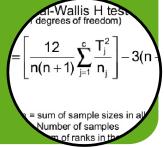
MRL


Cherry	
Peach	
Plum	
Stone Fruit	6

Possible harmonization of MRL calculation procedures

The EPA is currently testing the performance of the **Kruskal-Wallis** test against the current **5X Rule** to see which approach is better at distinguishing residue data sets that are statistically similar / different.

From a statistical viewpoint Initial results look very promising in favor of the K-W test



What's the answer?

International harmonized crop groups
Guidance on representative crops

Harmonized methods for calculating crop group

MRLs

Harmonized MRLs allow greater commodity trade among countries and open more markets for growers

We create chemistry